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� Markowitz’s mean-variance (MV) efficient portfolio selection is one of the most widely
used approaches in solving portfolio diversification problem. However, contrary to the notion
of diversification, MV approach often leads to portfolios highly concentrated on a few assets.
Also, this method leads to poor out-of-sample performances. Entropy is a well-known measure
of diversity and also has a shrinkage interpretation. In this article, we propose to use cross-
entropy measure as the objective function with side conditions coming from the mean and
variance–covariance matrix of the resampled asset returns. This automatically captures the
degree of imprecision of input estimates. Our approach can be viewed as a shrinkage estimation
of portfolio weights (probabilities) which are shrunk towards the predetermined portfolio, for
example, equally weighted portfolio or minimum variance portfolio. Our procedure is illustrated
with an application to the international equity indexes.

Keywords Diversification; Entropy measure; Portfolio selection; Shrinkage rule; Simulation
methods.

JEL Classification C15; C44; G11.

1. INTRODUCTION

Markowitz’s (1952) mean-variance (MV) optimization is one of the
most common formulation of portfolio selection problem. However,
portfolios constructed from sample moments of stock returns have proved
problematic. The main problems in optimal MV portfolio are that the
portfolios are often extremely concentrated on a few asset, which is
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a contradiction to the notion of diversification, and the out-of-sample
performances of the MV portfolios are not very good. It is generally
thought that these drawbacks are due to statistical error in estimating the
moments that are used as inputs in the MV optimization. These errors
are known to change optimal portfolio weights dramatically in such a
way that portfolios often involve extreme positions (Jobson and Korkie,
1980). There have been extensive research on reducing statistical errors
in sample mean and covariance matrix. One alternative is the class of
shrinkage estimators. Frost and Savarino (1986), Jorion (1986), and Ledoit
and Wolf (2003) used shrinkage estimation for the mean and covariance
matrix. Shrinkage estimators compensate for the positive (negative) error
that tends to be embedded in extremely high (low) estimated coefficients
by pulling them downward (upward) and prevent extreme positions in
portfolio selection.

Since shrinkage estimators are based on the empirical Bayesian
approaches, a particular prior distribution should be assumed to derive
those estimators. Although some prior distributions used in the empirical
Bayes estimation are known to work well, there is no systematic way
to choose a prior distribution. For example, Jorion (1986) used an
informative conjugate prior and derived the multivariate normal predictive
distribution with the mean of minimum variance portfolio as the target
mean. Frost and Savarino (1986) adapted a normal-wishart conjugate prior
and derived multivariate Student’s t predictive density. In their simulation
study, they assumed that means, variances and correlations for all the assets
are the same, so that their target mean and covariance matrix are those of
equally weighted portfolio. As a result, it is very hard to achieve a certain
shrinkage target preferred by asset managers, for example, a capitalization-
weighted portfolio.

We propose a method that ensures shrinkage towards maximum
diversification of portfolio weights using a information theoretic approach.
Our objective function, the Kullback–Leibler information criteria
(Kullback and Leibler, 1951 KLIC henceforth) is defined as pseudo
distance between two probability distributions (portfolio weights), p =
(p1, p2, � � � , pN )′ and q = (q1, q2, � � � , qN )′:

KLIC(p,q) =
N∑
i=1

pi ln(pi/qi)� (1)

The KLIC is also known as the cross-entropy (CE) measure (Golan
et al., 1996, p. 29). If one minimizes the CE measure with q as the
reference distribution that satisfies certain constraints, one can get a
solution, p̂, closest to q. If we set q = (1/N , 1/N , � � � , 1/N )′, uniform
distribution, then KLIC(p,q) is same as negative Shannon’s (1948)
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entropy measure. Since maximizing Shannon’s entropy subject to some
moment constraints implies estimating p that is the closest to the uniform
distribution (i.e., equally weighted portfolio), well-diversified optimal
portfolio can be achieved.

In order to incorporate problems of imprecision of sample moments
estimates, we define the confidence interval of maximized expected utility
values which lead to inequality constraints to our optimization procedures.
This confidence interval can be interpreted as the degree of uncertainty
for the sample moments estimates, and can be estimated by resampling
methods such as bootstrap or Monte Carlo approaches.

There are several advantages in our information theoretic approach:
(i) While previous articles primarily dealt with shrinkage estimators
for the mean and covariance matrix to obtain more well-behaved
optimal portfolios, we directly shrink portfolio composition (p) towards
predetermined target portfolio weights (q) that are of interest to asset
managers; (ii) Most asset managers are not allowed to sell short (i.e.,
the portfolio weights cannot be negative) in the real world. Since
constructed portfolio weights obtain through the maximum entropy (ME)
approach are in the form of “probabilities,” the weights are certainly non-
negative. However, negative portfolio weights, when they are appropriate,
for example, in case of hedge funds, can also be obtained using the
generalized cross entropy (GCE) framework; (iii) Since the mean and
covariance matrix should be estimated, one usually has only partial
information. It is known that if sample sizes of individual returns are
not large enough compare to the number of stocks, sample covariance
matrix tends to be very imprecise. By minimizing the CE (or GCE)
measure subject to certain well defined constraints, one can extract useful
information from the sample mean and covariance matrix.

The rest of the article is organized as follows. In Section 2, we provide
a critical review of the existing methodologies. In Section 3, we discuss
portfolio selection procedures using the ME principle based on the CE
measure. In Section 4, the GCE formalism is proposed to obtain negative
portfolio weights when short-selling is allowed. To illustrate the usefulness
of our proposed methodologies, in Section 5, we provide an empirical
application using eight international equity indexes with twelve different
asset allocation models. The article is concluded in Section 6.

2. CURRENT APPROACHES TO PORTFOLIO SELECTION

We denote the first two moments of the excess returns R =
(R1,R2, � � � ,RN )

′ = (r1 − rf , r2 − rf , � � � , rN − rf )′ on N risky assets as �(R) =
(m1,m2, � � � ,mN )

′ = m, and Var (R) = ((�ij)) = �, a N × N matrix, where
ri and rf denote the return of the ith, i = 1, 2, � � � ,N and the risk-free
assets, respectively. A portfolio � = (�1, �2, � � � , �N )

′ is a vector of weights
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that represents the investor’s relative allocation of the wealth satisfying∑N
i=1 �i = �′1N = 1, where 1N is an N × 1 vector of ones. The mean-

variance (MV) problem is to choose the portfolio weight vector � to
minimize the variance of the portfolio return Var (�′R) = �′�� subject to a
pre-determined target, �0 as expected return of the portfolio, i.e.,

min
�

�′��, s.t. �(�′R) = �′m = �0, �′1N = 1� (2)

Merton (1972) obtained the Lagrange multipliers corresponding to the
two constraints in (1), respectively, as

� = C�0 − A
D

, � = B − A�0

D
,

where A = 1′
N�

−1m,B = m ′�−1m,C = 1′
N�

−11N , and D = BC − A2. The
solution to (1) is given by

�̂ =
(�0

B

)
�−1m

at which we have the MV portfolio variance as

�2
�̂ = �̂′��̂ = C�2

0 − 2A�0 + B
D

�

Therefore, we can write(
D
C

)
�2
�̂ −

(
�0 − A

C

)2

= D
C 2

� (3)

For a given mean and covariance matrix, the MV paradigm provide a very
elegant way to achieve an efficient allocation such that higher expected
returns can only be achieved by taking on more risk, as it is clear from
the efficient frontier equation (3). Since the MV portfolio �̂ is derived
assuming investor’s trade-off between the mean and the variance, the
MV portfolio can also be obtained from the following expected utility
maximization problem:

max
�

�(�′R) − �

2
Var (�′R) s.t. �′1N = 1, (4)

where � denotes investor’s degree of relative risk aversion.
There are, however, some drawbacks of the above MV paradigm. First,

it is well known that the MV solution is very sensitive to estimation errors
of mean m and covariance matrix �. Jobson and Korkie (1980) and Best
and Grauer (1991) showed that the estimators such as the sample mean
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and sample covariance do not lend themselves to making inference in
small sample, and small increase in the mean of just one asset drives
half the securities out of the portfolio. Second, out-of-sample performance
of the MV portfolio is very poor, as Jorion (1985) and DeMiguel et al.
(2005) showed, it is often even worse than the naive, equally weighted
portfolio. Finally, related to the first point above, the MV optimal portfolio
often has extreme portfolio weights due to statistical errors in mean
and covariance estimates, which contradicts the notion of diversification.
Michaud (1989) introduced the concept of “error maximization” because
MV optimization overweight (underweight) those securities that have
large (small) estimated returns, negative (positive) correlation, and small
(large) variance. To resolve these problems, a number of alternative
methodologies have been proposed; some of which are discussed below.

2.1. Bayes–Stein Shrinkage Estimation

Suppose that the (N × 1) return vector R from N assets at time t
(t = 1, 2, � � � ,T ) follows an IID multivariate normal distribution with mean
� and covariance matrix �, and the investor has an informative conjugate
prior for �

p(� | �̄, 	) ∝ exp
[
−1
2
(� − 1N �̄)′(	�−1)(� − 1N �̄)

]
,

where �̄ and 	 denote grand mean and prior precision, respectively. Then,
the predictive density function of the vector of future return rate Rf ,
p(Rf |R ,�, 	), is multivariate normal with predictive Bayes–Stein mean

�bs = (1 − 
bs)�̂ + 
bs�min1N ,

where �̂ and �min denote the sample mean and the mean of minimum
variance portfolio, respectively, and 
bs = 	/(T + 	). Jorion (1986)
adapted empirical Bayes–Stein estimation in the sense that he estimated
the prior precision parameter, 	, from the data assuming a gamma
density for 	 with mean (N + 2)/(� − 1N �̄)′�−1(� − 1N �̄). The shrinkage
coefficient is estimated by


bs =
(

	

T + 	

)
= N + 2

(N + 2) + (�̂ − �min1N )′�̂−1(�̂ − �min1N )
, (5)

where �̂ is the sample covariance matrix. Note that the noninformative
Bayes–Stein estimator is a special case of (5) when 	 = 0 such that its mean
and variance are given by �̂ and (1 + 1/T )�̂, respectively (Bawa et al., 1979;
Zellner and Chetty, 1965). In this case, the sample mean is the predictive
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mean but the covariance matrix is inflated by (1 + 1/T ). Jorion’s (1986)
method provides a reasonable strategy when investor’s degree of belief
about the estimated sample mean is weak. In the similar way, Ledoit and
Wolf (2004a,b) proposed shrinkage estimation for the covariance matrix
� as

�̂bs = �F̂ + (1 − �)�̂,

where F̂ is usually chosen as a highly structured shrinkage target estimate.
Ledoit and Wolf (2003) suggested the single-factor matrix of Sharpe
(1963) as the shrinkage target and showed that their method substantially
increases the realized information ratio of the portfolio manager. Frost
and Savarino (1986) proposed shrinkage estimators for the mean and
covariance at the same time. However, they assumed the same priors for all
means, variances, and correlations, and thus the resulting portfolio weights
shrunk towards the equally-weighted portfolio.

2.2. Imposing Specific Constraints

Frost and Savarino (1988) showed that imposing upper bound
constraints or disallowing short-selling constraints on security weights
reduces estimation bias and improves portfolio performance. On the
other hand, Green and Hollifield (1992) argued that portfolio constraints
may arrest the portfolio performance because some of the off-diagonal
elements of � can take large negative values. Jagannathan and Ma (2003)
showed that even if Green and Hollifield’s argument is right, imposing
non-negative constraints always helps, and has the same effect of using
shrinkage estimate of �. Since shrinkage estimation improves finite sample
behavior, imposing non-negative constraints also improves the portfolio
performance.

2.3. Resampling Approach

Resampling scheme enables us to evaluate how much MV optimized
portfolio weights are affected by the error in estimating m and �. By
drawing T observations B times without replacement from the empirical
distribution using bootstrap, we obtain B new sets of the sample means and
the sample covariance matrices �(m̂i , �̂i), i = 1, 2, � � � ,B. For each (m̂i , �̂i),
we get a sequence of optimized portfolio weights �i = (�i

1, �
i
2, � � � , �

i
N )

′,
i = 1, 2, � � � ,B, by solving the MV problem or, equivalently, maximizing
the expected quadratic utility function. Evaluating (�1, � � � , �B) with the
original inputs (m̂, �̂), we have B points of �(m̂�i , �̂�i ), i = 1, 2, � � � ,B,
where m̂�i = �i ′m̂ and �̂�i =

√
�i ′�̂�i . These B points are statistically



490 A. K. Bera and S. Y. Park

equivalent to the MV optimal efficient portfolio under the original inputs
(m̂, �̂), and must lie below its frontier.

Michaud (1998) proposed resampled efficient portfolio using
resampling method. Instead of considering a particular MV portfolio as
above, let us consider MV portfolios on the MV efficient frontiers. By
setting ranks for each MV efficient frontier between minimum variance
portfolio (say, rank 1) and maximum return portfolio (say, rank l), B
sets of rank-associated MV efficient portfolios can be calculated using
�(m̂i , �̂i), i = 1, 2, � � � ,B at each rank, k = 1, � � � , l , i.e., we have B portfolios
for each rank. The resampled weight for a portfolio of rank k is given by

�̄rs
k = 1

B

B∑
b=1

�b,k , (6)

where �b,k denotes the N × 1 vector of rank-k portfolio for bth resampling.
The main difference between methods of the resampled efficient portfolio
and the empirical Bayes portfolio is that in the former, we first do the
optimization and then calculate final portfolio weights, while in the later
optimization procedure is carried out at the second stage after obtaining
the empirical Bayes–Stein estimates of m and �. Since the resampled
weights are calculated by sample average of B number of resampling
portfolios, it is well-diversified. However, Scherer (2002) pointed out that
the distribution of weights, �b,k for b = 1, � � � ,B is usually skewed so that the
sample mean cannot represent the location of the distribution correctly.
In the next section, we propose our entropy approach to optimal portfolio
selection which has nice interpretations of portfolio diversification and
shrinkage effects.

3. INFORMATION THEORETIC APPROACH
TO PORTFOLIO SELECTION

3.1. Entropy Measures

A discrete probability distribution p = (p1, p2, � � � , pN )′ of a random
variable taking N values provides a measure of uncertainty (disorder)
regarding that random variable. In the information theory literature,
this measure of disorder is called entropy. Entropy measures have been
extensively used in econometrics, and for more on this see, Maasoumi
(1993), Golan et al. (1996), Ullah (1996), and Bera and Bilias (2002).

A portfolio allocation � = (�1, �2, � � � , �N )
′ among N risky assets, with

properties �i ≥ 0, i = 1, 2, � � � ,N and
∑N

i=1 �i = 1, has the structure of a
proper probability distribution. We will use the Shannon entropy (SE)
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measure

SE(�) = −
N∑
i=1

�i ln �i (7)

as a measure of portfolio diversification. When �i = 1/N for all i , SE(�)
has its maximum value lnN . The other extreme case occurs when
�i = 1 for one i , and = 0 for the rest, then SE(�) = 0. Therefore, SE
that provides a good measure of disorder in a system or expected
information in a probability distribution, can be taken as a measure of
portfolio diversification. In financial applications, portfolios are generally
evaluated in terms of their degree of diversification using the SE measure
after portfolios are obtained using different selection procedures (see
for instance, Fernholz, 2002, p. 36; Hoskisson et al., 1993; Lubatkin
et al., 1993). We put the entropy itself in the objective function so as
to obtain maximum diversity in a portfolio allocation. It is clear that
when we maximize SE(�) we shrink the portfolio towards an equally
weighted portfolio, namely, N −11 = (1/N , 1/N , � � � , 1/N )′. We will also
consider a more general objective function. Suppose a portfolio weight
changes from �i to qi , then the change in entropy is − ln qi − (− ln �i) =
ln(�i/qi). Taking average of ln(�i/qi) with �i ’s as weights we end up
with the notion of CE, CE(�,q) = KLIC(�,q), defined in (1). It is
clear that when q = (1/N , 1/N , � � � , 1/N )′, CE(�,q) = ∑N

i=1 �i ln �i − lnN �
Therefore, maximization of SE in (7) is a special case of CE minimization
with respect to an equally weighted portfolio. In our analysis, we will
emphasize the minimization of CE(�,q) for a given q as a reasonable
opportunity set for an investor. Thus, starting from an initial portfolio
allocation q, through minimization of CE we can obtain a more diversified
portfolio. Golan et al. (1996, p. 31) showed that

CE(�,q) =
N∑
i=1

�i ln(�i/qi) ≈
N∑
i=1

1
qi
(�i − qi)2 for qi > 0� (8)

Thus, we adjust small allocations of the initial portfolio q more than
the large ones, possibly resulting in a more diversified portfolio.

3.2. Preliminary Approach

A good starting point for incorporating entropy measure in the
portfolio selection is the dice problem introduced by Jaynes (1963). The
dice problem can be stated as follows: Suppose one is asked to estimate
the probabilities � = (�1, �2, � � � , �6)

′ for each possible outcomes of a fair
six-sided die. The only information available is the mean value of the
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distribution, say �0. There are infinite number of sets of values of � that
will lead to the mean value of �0. Jaynes (1963, p. 187) suggested the
need for a measure of the “uncertainty” of the probability distribution that
can be maximized subject to the mean constraint which represents the
available information, and advocated that a correct measure of uncertainty
is the SE given in (7). As we mentioned before, portfolio weights for
different financial assets can be regarded as probabilities: weights are non-
negative and they sum to 1. Thus, we can consider portfolio selection
problem such that asset managers are asked to select portfolio weights � =
(�1, �2, � � � , �N )

′ for N assets conditional on a given investor’s preferred
mean value of the portfolio, say �0. This problem, like that of Jaynes’ is
ill-posed since N number of weights need to be determined with only two
pieces of information: mean of portfolio is equal to �0 and the sum of
weights is equal to 1. Following Jaynes (1963) we can state the optimization
problem as (see also Golan et al., 1996, pp. 12–14)

max
��i 

N
i=1

−
N∑
i=1

�i ln �i (9)

subject to

N∑
i=1

m̂i�i = �0,
N∑
i=1

�i = 1, (10)

where m̂i denotes sample mean of asset i . After setting the Lagrangian
function as

£ = −
N∑
i=1

�i ln �i − �

( N∑
i=1

m̂i�i − �0

)
− �

( N∑
i=1

�i − 1
)
,

we get the solution

�̂i = 1
�(�)

exp �−�m̂i�, i = 1, 2, � � � ,N , (11)

where �(�) = ∑N
i=1 exp �−�m̂i� obtained by satisfying

∑N
i=1 �i = 1.

The solution (11) turns out to be a probability mass function that
has the form of an exponential distribution and therefore, it naturally
yields no short-selling (�̂i ≥ 0). Since the objective function (9) is same as
the negative of CE(�,q) with q = N −11 plus a constant, we can interpret
the solution �̂ as closest to the equally weighted portfolio (i.e., the most
diversified portfolio) conditional on prescribed target mean �0. In this
sense, resulting portfolio weights are maximum diversified portfolio given
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mean constraint. However, this formulation uses information of return
(mean) without considering risk (variance). By including additional side
constraint on variance �2 = �′��, one can extend the above optimization
problem as

max
�

−�′ ln � (12)

subject to

�′m̂ ≥ �0,
√
�′�̂� ≤ �0, � ≥ 0, and �′1N = 1, (13)

where �̂ denotes the sample covariance matrix of asset returns. The
inequality constraints (13) can be interpreted as boundary conditions
which an investor might prefer, i.e., the portfolio mean is not less than �0

and the portfolio standard deviation is not greater than �0. Although the
problem (12)–(13) is intuitively simple, it does not have a simple solution,
primarily due to the nonlinear inequality constraint,

√
�′�� ≤ �0.

Suppose that an investor is concerned with only mean (�� = �′m)
and standard deviation (�� = √

�′��) of portfolio returns. Then, one
way to represent the inequality constraints in (13) is by the indifference
curve of the Leontief utility function U (�0, �0). We can define investor
i’s opportunity set due to the constraints in (13) by �i = �(��, ��) | �� ≤
�0
i , �� ≥ �0

i . Suppose investors ‘A’ and ‘B’ choose particular lower bounds,
�0
A and �0

B , and upper bounds, �0
A and �0

B , for portfolio means and
standard deviations, respectively. In Figure 1, UA and UB denote two
investors’ indifference curves, and point E corresponds to the equally
weighted portfolio. For each investor i , the maximization problem given
in (12)–(13) is the same as choosing the closest portfolio weights to the
equally weighted portfolio with (��, ��) ∈ �i .

By generating many possible values of m and �, we found numerically
that portfolios which solve (12)–(13) lie on the vertical line of the
indifference curve if �0

i < �0
E and �0

i < �0
E (i.e., investor ‘A’) and on

the horizontal line of the indifference curve if �0
i > �0

E and �0
i > �0

E .
When �0

i < �0
E and �0

i > �0
E (i.e., ‘B’ investor), the portfolio solves above

optimization problem at the kinked-point i (point B in the case of ‘B’
investor). In the case of �E ⊆ �i (i.e., when �0

i > �0
E and �0

i < �0
E), the

maximum diversified portfolio is the equally weighted portfolio. Since the
Leontief utility function is not differentiable it is hard to solve this problem
by standard gradient-based optimization routines. Moreover, this model
cannot account for estimation imprecision such as when we use the sample
mean and covariance.
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FIGURE 1 Maximum diversification problem with Leontief utility function.

3.3. General Approach

To incorporate estimation imprecision of the mean and covariance (as
in Bayes–Stein estimation), we need more general constraint than in (13).
In general, we consider the following minimization problem

min
�

CE(� |q) =
N∑
i=1

�i ln(�i/qi) (14)

subject to

�U (�,R , �) ≥ �, � ≥ 0, and �′1N = 1, (15)

where U (�,R , �) is an utility function, � is the risk aversion parameter,
and � reflects investor’s strength of belief in the estimated expected utility
values, which we elaborate further below. We assume that N × 1 random
vector R has a distribution function F (R) with density f (R). To see the
significance of �, we define

� ≡ �U (�̌,R , �), (16)
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where �̌ = (�̌1, �̌2, � � � , �̌N ) satisfies following expected utility maximization,

�̌ = argmax
�

�U (�, R̃ , �) (17)

subject to

�′1 = 1, and � ≥ 0,

where R̃ is a random sample of size T drawn from the empirical
distribution F̂ (R). As we discussed in Section 2.3, estimation imprecision
of the sample moments can be measured directly by resampling methods.
Solving the optimization problem (17) using B sets of samples leads to B
portfolios, �̌b , b = 1, 2, � � � ,B. The investor’s strength of belief parameter �
can also be related to the degree of shrinkage and be expressed as, say the
r th quantile of the distribution of �, 0 < r < 1, i.e.,

� = G−1(r ) ≡ �r , say,

where G(·) is distribution function of �. Thus, the first inequality
constraint, �U (�,R , �) ≥ � in (15), can be represented as a confidence
interval, I = [�r , �U ], where �U is the same as the maximized expected
utility of MV efficient portfolio given � if �U (·) is the quadratic expected
utility function. This is due to the fact that when there is no estimation
error, the maximized expected utility evaluated at these exact moments
dominates all values generated by �̌b , b = 1, 2, � � � ,B.

The confidence interval has a nice interpretation as a measure of
uncertainty (see Bewley, 1988). Suppose an investor has high uncertainty
aversion in the portfolio selection problem. Then, s/he will select relatively
low �, i.e., �r with a small value of r , and use a (1 − r )% confidence
interval. Since � ≡ �r represents an investor’s strength of belief, we can
correspond �r with a large value of r , with investor who has less uncertainty
in estimation, and vice-versa. Garlappi et al. (2004) used the notion of the
confidence interval to explain investor’s aversion toward uncertainty using
a multi-prior approach, and showed that their estimated portfolio weights
shrink toward the weights of minimum variance portfolio more than
those of empirical Bayes–Stein portfolio. While recent studies based on
the empirical Bayes–Stein estimator tried to estimate admissible moments
at the first stage and then optimize the portfolio weights by the MV
principle, weights achieved by minimizing CE objective function subject to
sets of constraints are shrunk directly to an appropriate prior weights, q.
Moreover, as Frost and Savarino (1986) emphasized, there is no certain way
to select a particular informative prior in Bayesian decision rules. One can
readily choose alternative informative priors for the Bayes–Stein estimator
and obtain different type of shrinkage estimators for portfolio weights
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by calculating somewhat complex predictive density. However, instead of
choosing alternative informative priors, one can choose an appropriate
prior weight vector q, and minimize the CE measure to estimate portfolio
weights which also has the shrinkage interpretation. Thus, we can say that
CE measure works directly as shrinkage estimator of portfolio weights in
asset allocation problem.

The MV criterion has good performance as far as returns are driven
by an elliptical distribution, such as, normal, Student’s t and Levy
distributions. Chamberlain (1983) showed that the MV approximation
of the expected utility is exact for all utility functions for an elliptical
distribution. Thus, for simplicity, we consider the maximization of the
quadratic expected utility function given in (4), i.e.,

max
�

�U (�,R , �) = max
�

[
�′m − �

2
�′��

]
(18)

subject to

� ≥ 0, and �′1N = 1�

One can use bootstrap or Monte Carlo methods to estimate a
distribution of � in (16), i.e., resampling T × N samples for B times from
the empirical distribution, F̂ (R). Let these resampled series be R̃(b), b =
1, 2, � � � ,B. Then, �̌(b) and �(b) can be calculated as follows

�̌(b) = argmax
�

[
�′m̃(b) − �

2
�′�̃(b)�

]
, (19)

�(b) = �̌′
(b)m̂ − �

2
�̌′
(b)�̂�̌(b), (20)

where m̂ and �̂ are the sample mean and sample covariance matrix
estimated from original return data R , and m̃(b) and �̃(b) are calculated
from simulated data R̃(b). The empirical distribution of � can be estimated
based on �(b), b = 1, 2, � � � ,B. Then, the CE minimization problem can be
written as

min
�

N∑
i=1

�i ln(�i/qi) (21)

subject to

�′m̂ − �

2
�′�̂� ≥ Ĝ−1(r ), � ≥ 0, and �′1N = 1, (22)
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where Ĝ(·) denotes the empirical distribution function of �. Under
the assumption of smooth expected utility function in (18), it is
straightforward to solve the optimization problem minimize (21)–(22) by
classical gradient based routine. This is in contrast to the Leontief utility
function discussed in Section 3.2, for which no easy solution is available.

Using the monthly data given in Michaud (1998, p. 14) on
eight international equities, Figure 2 shows the shrinkage effect of
minimizing CE portfolio weights when q is chosen as equally weighted
portfolio. Points A, B, and C denote MV efficient, minimum CE
and equally weighted portfolios, respectively, with � = 0�06. Standard
deviations and means (monthly) associated with these portfolios are
(2�599, 1�131), (3�006, 1�146), and (3�459, 1�168), respectively. Solid line
denotes maximized expected utility indifference curve under MV efficient
portfolio, and broken line represents that of CE portfolio at 0�2 quantile
level (r = 0�2). Mixed line is the MV efficient frontier. Statistically

FIGURE 2 Shrinkage effects of minimizing cross-entropy. Note: The MV efficient frontier is
illustrated by the mixed line. The 500 statistically equivalent portfolios associated with a MV efficient
portfolio ‘A’ are represented by dot points. ‘B’ and ‘C’ denote minimum CE and equally weighted
portfolios, respectively.
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equivalent points,
(√

�̌′
(i)�̂�̌(i), �̌′

(i)m̂
)
, i = 1, 2, � � � , 500 for the MV efficient

portfolio are represented by small dots. We note that minimization of CE
shrinks MV efficient portfolio (point A) toward the more diverse equally
weighted portfolio (point C). The degree of shrinkage depends on �, the
investor’s degree of uncertainty aversion.

Figure 3 shows nonparametric kernel density for � based on 500 data
points. The shape of the density is clearly negatively skewed. Since �MV =
1�131 − 0�06/2 × 2�5992 = 0�928 and �0�2 = 0�874, 80% confidence interval
is given by [0�874, 0�928]. It can be checked that �CE0�2 = 1�146 − 0�06/2 ×
3�0062 
 0�876, is very close to the 0�2 quantile of � from Figure 3. That is,
the maximized utility value of point B in Figure 2 is “almost” the same as
0�2 quantile of �.

Next we use data from Kenneth French’s website (http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/). These are monthly
equal-weighted returns for health, utility, and others industry portfolios
for the period January 1970 to May 2005. For this data the mean and

FIGURE 3 Nonparametric density for �. Note: Nonparametric kernel density for � is estimated
based on 500 data points in Figure 2, and using optimal bandwidth = 0�0068.
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covariance matrix are given by (1�551, 1�156, 1�215)′ and
57�298 12�221 33�026
12�221 13�168 11�814
33�026 11�814 27�952


 ,

respectively. Figure 4 shows contour curves of − ∑N
i=1 �i ln �i for the

three assets (N = 3) on the monthly portfolio standard deviation-mean
plane. We consider every possible combination of weights �1, �2 and �3,
each taking 50 equally spaced values in (0, 1), and satisfying

∑N
i=1 �i =

1. The upper envelope curve in Figure 4 corresponds to the set of
MV efficient portfolio. The point where

∑N
i=1 �i ln �i takes highest value

represents equally weighted portfolio. The smoothness of each contour
curve ensures existence of a unique solution if we are to solve the
minimization problem (21)–(22) with q = N −11. Figure 5 shows contour
curves of − ∑N

i=1 �i ln(�i/�
min
i ), where �min is portfolio weights for minimum

variance portfolio. We can see that the largest value of the function
corresponds to minimum variance portfolio. Since minimum variance
portfolio does not take account of the portfolio mean value, contour graph
of Figure 5 is sensitive to the mean values compared to that in Figure 4.
Thus, by minimizing CE with q = �min , it shrinks toward minimum variance
portfolio and at the same time takes care of the portfolio mean values.

FIGURE 4 Contour curves of − ∑N
i=1 �i ln(�i).
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FIGURE 5 Contour curves of − ∑N
i=1 �i ln(�i/�

min
i ).

4. GENERALIZED CROSS-ENTROPY (GCE) METHOD

When asset managers are allowed to sell short, the models presented
in the previous section cannot be used directly. Eliminating the no-
short-selling constraints � ≥ 0 from (15) might lead to nonexistence of
the objective function (14), since the function ln(·) is defined only for
non-negative values. In this situation generalized cross-entropy (GCE)
method proposed by Golan et al. (1996, p. 77) can be used allowing
for negative portfolio weights for some assets. Let us define a discrete
probability distribution pi = (pi1, pi2, � � � , piM )′, i = 1, 2, � � � ,N over [l ,u], a
set of equally distanced discrete points z = (z1, z2, � � � , zM )′. Similarly, let
�i = (�i1,�i2, � � � ,�iM )

′ be a discrete prior probability distribution for each
prior qi over z. The portfolio weights, then, can be represented by

� = Zp =




z ′ 0 0 0 0
0 z ′ 0 0 0
0 0 z ′ 0 0

� � �

0 0 0 0 z ′







p1
p2
���
���
pN


 �

In the quadratic expected utility case, we can consider the following
GCE minimization problem instead of the CE minimization problem given
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in (21)–(22) to allow for short-selling, i.e.,

min
p∈�

N∑
i=1

M∑
m=1

pim ln(pim/�im) (23)

subject to

(Zp)′m̂ − �

2
(Zp)′�̂(Zp) ≥ Ĝ−1(r )

p ′
i1M = 1, i = 1, 2, � � � ,N ,

(Zp)′1N = 1,

where Ĝ(·) is the empirical distribution function of the maximized
expected utility � in (16). If we let p̂ be the solution to (23), each �̂i for
ith asset (i = 1, 2, � � � ,N ) can be calculated by

�̂i = z ′p̂i =
M∑

m=1

zmp̂im �

At this stage, it is worthwhile to mention two important points
about GCE portfolio selection problem. First, one has to set the support
[l ,u] in such a way that the solution of GCE portfolio selection
problem yields appropriate negative weights. For example, one can
simply set [l ,u] = [−1, 1] and consider 11 equally distanced discrete
points, z = (−1�0,−0�8,−0�6, � � � , 0�6, 0�8, 1�0)′. However, it may not lead to
appropriate weights if the support [l ,u] is not wide enough to generate
the MV portfolio weights. Since GCE portfolio is equivalent to that of
MV efficient portfolio when input estimates are exact, the MV efficient
portfolio should be in the set �� | � = Zp, p ∈ �. Note that, theoretically,
MV portfolio weights can be any numbers in the real line. Thus, the
support [l ,u] has to be wide enough to generate MV portfolio weights.
Second, �im in (23) can be interpreted as the given discrete prior for the
original prior qi over z, which should be determined before estimation
procedure. However, only one qi for each i = 1, 2, � � � ,N is known before
estimation stage, for example, it can be that of minimum variance or
equally weighted portfolio. Thus, choosing �im , m = 1, 2, � � � ,M for a qi
is not easy. We choose �i = (�i1,�i2, � � � ,�iM )

′ using the ME principle,
and maximize − ∑M

m=1 �im ln�im with respect to �i and side conditions∑M
m=1 zm�im = qi and

∑M
m=1 �im = 1. This �i provides a most uniform

(largest variance) probability distribution and an uncertainty measure for
each of the qi (i = 1, 2, � � � ,N ) over z. Therefore, our choice is not so
arbitrary, and as we will see in our empirical application, it works quite
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well. The unique solution of the above optimization problem will have
expressions similar to those in (11).

5. EMPIRICAL APPLICATION

To illustrate the practical usefulness of our methodology, we consider
an application of maximum entropy portfolio selection approach using
eight international equity indices. The returns are computed from the
month-end U.S. dollar value for the period, December 1969 to July
2005. The indices are for the United States, Canada, Italy, Japan, United
Kingdom, Switzerland, and Germany. Data are from Morgan Staney
Capital International (MSCI). The number of observation is 428. Summary
statistics for the data are presented in Table 1.

We compare the performance of the following asset allocation models
discussed earlier: MV efficient portfolio (Markowitz, 1952) (MV); empirical
Bayes portfolio (Jorion, 1986) (EB); Bayes with diffuse prior (BDP);
minimum variance portfolio (MinV); equally weighted portfolio (EQ);
resampled efficient portfolio (Michaud, 1998) (RS); two cases of CE
portfolio, one (CE1) with prior weight vector q corresponding to the
equally weighted portfolio and for the other (CE2), q comes from the
minimum variance portfolio. For all models except for EQ both with-
and without-short-sale case are considered. Those with-short-sales, the
portfolios are computed using GCE, and will be denoted by MVs, EBs,
BDPs, MinVs, RSs, CEs1, and CEs2, respectively. Since Frost and Savarino
(1986) and Jorion (1986) used the empirical Bayes procedure with
shrinkage toward equally weighted and minimum variance portfolios,
respectively, we expect CE1 and CE2 to generate similar results to theirs.

In order to analyze portfolio performance we use “rolling window”
scheme. We consider four window lengths, W = 24, 48, 60, 120, months
and estimate parameter values over each W and all asset allocation models.

TABLE 1 Sample means, variances, and the correlation matrix

Country USA Canada Italy France Japan UK Swiss Germany

Mean 0�9707 0�9823 0�7719 1�0347 1�1508 0�9789 1�1886 1�0062
Variance 19�9114 31�0974 53�0035 42�2422 40�6479 40�4327 28�5035 38�2843
Correlation 1�0000

0�7254 1�0000
0�2987 0�3479 1�0000
0�5025 0�4867 0�4949 1�0000
0�3104 0�3281 0�3485 0�3924 1�0000
0�5412 0�5239 0�3791 0�5748 0�3737 1�0000
0�5253 0�4786 0�4095 0�6390 0�4273 0�5793 1�0000
0�4762 0�4154 0�4601 0�6719 0�3634 0�4778 0�6871 1�0000
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Using the estimated parameters, optimal portfolio for each considered
model is calculated. The portfolio return for next period can then be
obtained by holding the portfolio with these weights over the next period.
Since we deal with monthly return data out-of-sample holding period
is a month. We repeat this procedure by moving the window for the
next period, i.e., dropping the observation for the beginning month and
including the data for the next month until we reach the last (428th)
observation.

To evaluate the performance of each model, we use two evaluation
measures, the Sharpe ratio (SR) and the certainty equivalent return
(CEQ). Each evaluation measure is calculated at both in- and out-of-
sample cases. For the in-sample case, evaluation measures are based on the
estimated parameters over the chosen window. The average of in-sample
estimate of the SR is given by

SRin = 1
(T − W )

T∑
t=W

�̂′
t m̂t√

�̂′
t �̂t �̂t

, (24)

where m̂t , �̂t , and �̂t denote, respectively, the estimates of the mean and
the covariance matrix, and the portfolio weight vector for the window, [t −
W + 1, t ]. For the out-of-sample case the returns of the resulting portfolio
depend on the next period returns of each asset. Following rolling window
scheme, the out-of-sample portfolio return at time t + 1 can be calculated
by �̂t+1 = �̂′

tRt+1, where Rt+1 denotes the returns at time t + 1. The out-of-
sample mean, variance, and SR of returns can be written, respectively, as

m̃ = 1
(T − W )

T∑
t=W

�̂t , (25)

�̃2 = 1
(T − W − 1)

T∑
t=W

(
�̂t − m̃

)2
, (26)

SRout = m̃
�̃
� (27)

For the other evaluation measure, the certainty equivalent return, we
assume that the first and second moments of return can summarize an
investor’s preference, and we define CEQ as

CEQ = �′m − �

2
�′��, (28)
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where � is the risk aversion parameter. The CEQ averages for the in- and
out-of-sample cases are given, respectively, by

CEQin = 1
(T − W )

T∑
t=W

(
�̂′
t m̂t − �

2
�̂′
t �̂t �̂t

)
, (29)

and

CEQout = m̃ − �

2
(�̃)2 , (30)

where m̃ and �̃ are defined in (25) and (26).
We evaluate portfolio performance for five different values of the

risk aversion parameter, namely, � = 0�07, 0�10, 0�17, 0�51, 1. However, since
the qualitative results regarding the comparison of different portfolio
formation techniques are quite similar for all the values of �, we present
the results only for � = 0�10. The results for other values of � are available
from authors. In Table 2, we present the results for window length
W = 24, 48 and the results for W = 60, 120 are given in Table 3. For
each window length there are some interesting common results: (i) when
short-sales are not allowed, MV performs the best in terms of both SR
and CEQ among all considered models for the in-sample case. When
short-sales are allowed, MVs performs better than MV; their out-of sample
performances, however, are very poor. We observe that SR and CEQ of
MVs are uniformly lower than any other models for the out-of-sample case;
(ii) EQ has higher values of out-of-sample SR and CEQ than MVs. This
implies that classical MV portfolio’s out-of-sample performances are not
good. These results agree with those of Jorion (1985) and DeMiguel et al.
(2005) who compared the performances of EQ and MVs; (iii) as Frost and
Savarino (1988) and Jagannathan and Ma (2003) demonstrated, imposing
short-sales constraints helps to improve the out-of-sample performance for
MV, EB, and MinV; (iv) for CE1 and CE2, as expected, the in-sample SR and
CEQ values monotonically increase with the value of r , i.e., as the degree of
investor’s belief for the sample mean and covariance increases. In-sample
SR and CEQ of CE2 are always higher than those of MinV, and also those
of EB for certain high values of r . This is due to the fact that the degree of
shrinkage effects of CE2 at certain high-quantile values is lower than those
of EB. For example, since CE2 works as shrinkage rule from MV to MinV,
resulting values of SR and CEQ should be located between those of MV
and MinV. The same argument applies to CE1. SR and CEQ values of CE1

should be between those of MV and EQ. We can see that for the in-sample
case, SR and CEQ values move toward those of MV as r increases. And as
r decreases, SR and CEQ values of CE1 and CE2 move toward those of EB
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TABLE 2 In- and out-of-sample performance of asset allocation models

W = 24 W = 48

In-sample Out-of-sample In-sample Out-of-sample

SR CEQ SR CEQ SR CEQ SR CEQ

Short sales not allowed
MV 0.3773 0�5253 0.2333 −0�0300 0.3416 0�4614 0.2359 0�0853
BDP 0.3768 0�5241 0.2339 −0�0190 0.3414 0�4612 0.2362 0�0883
EB 0.3149 0�2535 0.2257 0�0567 0.2872 0�2567 0.2420 0�1463
EQ 0.2201 −0�4728 0.2339 0�0513 0.2177 −0�2108 0.2358 0�0579
MinV 0.2556 0�0253 0.2211 0�0593 0.2676 0�1833 0.2413 0�1386
RS 0.3510 0�3879 0.2452 0�0782 0.3257 0�3914 0.2382 0�1062

CE1 (r = 0�1) 0.2359 −0�3212 0.2340 0�0593 0.2410 −0�0602 0.2328 0�0554
CE1 (r = 0�2) 0.2587 −0�1537 0.2362 0�0712 0.2620 0�0609 0.2314 0�0597
CE1 (r = 0�5) 0.3101 0�1630 0.2379 0�0722 0.2981 0�2537 0.2321 0�0773
CE1 (r = 0�8) 0.3466 0�3655 0.2392 0�0573 0.3220 0�3691 0.2369 0�1016
CE1 (r = 0�9) 0.3583 0�4284 0.2396 0�0480 0.3300 0�4066 0.2394 0�1114

CE2 (r = 0�1) 0.2676 0�0671 0.2162 0�0284 0.2689 0�1879 0.2416 0�1445
CE2 (r = 0�2) 0.2752 0�0996 0.2102 −0�0076 0.2729 0�2028 0.2401 0�1425
CE2 (r = 0�5) 0.3031 0�2208 0.2048 −0�0649 0.2930 0�2787 0.2392 0�1455
CE2 (r = 0�8) 0.3373 0�3711 0.2102 −0�0718 0.3173 0�3702 0.2378 0�1271
CE2 (r = 0�9) 0.3511 0�4286 0.2139 −0�0643 0.3261 0�4058 0.2394 0�1281

With short sales

MVs 0.5544 1�6812 0.1646 −2�1317 0.4335 0�9282 0.1615 −0�7192
BDPs 0.5534 1�6708 0.1671 −1�9446 0.4330 0�9270 0.1632 −0�6844
EBs 0.4306 0�8403 0.1934 −0�2324 0.3271 0�4455 0.2123 0�0106
MinVs 0.2853 0�2428 0.1920 −0�1172 0.2848 0�2879 0.2133 0�0044
RSs 0.5553 1�4152 0.1651 −2�0414 0.4351 0�9065 0.1621 −0�6994
CEs1 (r = 0�1) 0.2201 −0�4728 0.2339 0�0513 0.2177 −0�2108 0.2358 0�0579
CEs1 (r = 0�2) 0.2201 −0�4728 0.2339 0�0513 0.2194 −0�2035 0.2342 0�0528
CEs1 (r = 0�5) 0.2202 −0�4707 0.2337 0�0508 0.2415 −0�0748 0.2230 0�0062
CEs1 (r = 0�8) 0.2625 −0�1305 0.2234 0�0112 0.3014 0�2703 0.2135 −0�0227
CEs1 (r = 0�9) 0.3306 0�2790 0.2174 −0�0469 0.3348 0�4425 0.2130 −0�0241

CEs2 (r = 0�1) 0.2853 0�2428 0.1920 −0�1172 0.2848 0�2880 0.2133 0�0045
CEs2 (r = 0�2) 0.2853 0�2428 0.1920 −0�1172 0.2848 0�2880 0.2133 0�0045
CEs2 (r = 0�5) 0.2853 0�2428 0.1920 −0�1172 0.2889 0�3036 0.2101 −0�0082
CEs2 (r = 0�8) 0.3078 0�3187 0.1856 −0�1589 0.3089 0�3914 0.1972 −0�0569
CEs2 (r = 0�9) 0.3472 0�4964 0.1713 −0�2879 0.3306 0�4814 0.1910 −0�0933

Note: The table represents in-sample and out-of-sample results for � = 0�10. SR and CEQ denote
Sharpe ratio and certainty equivalence measure, respectively.

and EQ, respectively. However, for the out-of-sample situations, we do not
notice any particular orderings.

As we can see in Tables 1 and 2 the results for CEs1 and CEs2 are
very similar to those of CE1 and CE2. We, therefore, summarize the
results for without-short-sale only. For small window length (W ), mean and
covariance estimates are likely to have large estimation errors. When we
have W = 24, the ratio of W to N , W /N = 24/8 = 3, is relatively low, and
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TABLE 3 In- and out-of-sample performance of asset allocation models

W = 60 W = 120

In-sample Out-of-sample In-sample Out-of-sample

SR CEQ SR CEQ SR CEQ SR CEQ

Short sales not allowed
MV 0.3366 1�2129 0.2595 0�1961 0.3344 0.5165 0.2742 0.2432
BDP 0.3364 1�2089 0.2600 0�1998 0.3343 0.5165 0.2744 0.2447
EB 0.2890 0�8905 0.2763 0�3024 0.2955 0.3813 0.2819 0.3145
EQ 0.2244 0�7834 0.2625 0�1852 0.2470 0.0828 0.2514 0.1344
MinV 0.2755 0�8370 0.2768 0�3039 0.2891 0.3573 0.2815 0.3118
RS 0.3246 1�1538 0.2651 0�2279 0.3262 0.4830 0.2714 0.2364

CE1 (r = 0�1) 0.2507 0�8729 0.2614 0�1898 0.2769 0.2450 0.2505 0.1409
CE1 (r = 0�2) 0.2698 0�9376 0.2626 0�2033 0.2889 0.3053 0.2535 0.1583
CE1 (r = 0�5) 0.3007 1�0462 0.2654 0�2254 0.3099 0.4079 0.2572 0.1788
CE1 (r = 0�8) 0.3207 1�1253 0.2689 0�2458 0.3239 0.4720 0.2646 0.2099
CE1 (r = 0�9) 0.3271 1�1550 0.2670 0�2366 0.3279 0.4898 0.2674 0.2210

CE2 (r = 0�1) 0.2756 0�8374 0.2767 0�3035 0.2898 0.3598 0.2818 0.3134
CE2 (r = 0�2) 0.2770 0�8434 0.2756 0�2995 0.2921 0.3683 0.2832 0.3197
CE2 (r = 0�5) 0.2938 0�9167 0.2798 0�3193 0.3051 0.4165 0.2815 0.3111
CE2 (r = 0�8) 0.3148 1�0258 0.2775 0�3048 0.3202 0.4715 0.2822 0.3071
CE2 (r = 0�9) 0.3222 1�0759 0.2729 0�2800 0.3252 0.4890 0.2816 0.2994

With short sales

MVs 0.4086 1�7626 0.2076 −0�2586 0.3669 0.6468 0.2401 0.0243
BDPs 0.4083 1�7482 0.2091 −0�2400 0.3667 0.6467 0.2406 0.0289
EBs 0.3112 0�9385 0.2621 0�2425 0.3038 0.4218 0.2785 0.2985
MinVs 0.2862 0�8407 0.2662 0�2573 0.2962 0.3934 0.2798 0.3030
RSs 0.4103 0�7792 0.2113 −0�2498 0.3676 0.6441 0.2404 0.0247
CEs1 (r = 0�1) 0.2244 −0�1300 0.2624 0�1849 0.2511 0.1017 0.2491 0.1247
CEs1 (r = 0�2) 0.2266 −0�1208 0.2588 0�1696 0.2586 0.1422 0.2445 0.1052
CEs1 (r = 0�5) 0.2517 0�0195 0.2457 0�1193 0.2873 0.2947 0.2385 0.0860
CEs1 (r = 0�8) 0.3064 0�3135 0.2454 0�1349 0.3153 0.4307 0.2414 0.1059
CEs1 (r = 0�9) 0.3314 0�4383 0.2423 0�1179 0.3274 0.4870 0.2426 0.1106

CEs2 (r = 0�1) 0.2862 0�3062 0.2662 0�2572 0.2962 0.3934 0.2798 0.3030
CEs2 (r = 0�2) 0.2862 0�3062 0.2662 0�2572 0.2967 0.3953 0.2792 0.3007
CEs2 (r = 0�5) 0.2889 0�3162 0.2611 0�2359 0.3006 0.4099 0.2762 0.2898
CEs2 (r = 0�8) 0.3027 0�3735 0.2465 0�1760 0.3123 0.4546 0.2677 0.2513
CEs2 (r = 0�9) 0.3224 0�4523 0.2398 0�1400 0.3225 0.4932 0.2602 0.2145

Note: The table represents in-sample and out-of-sample results for � = 0�10. SR and CEQ denote
Sharpe ratio and certainty equivalence measure, respectively.

this case could be thought of as asset allocation problems with relatively
large number of assets (say, N = 500 and W = 1500). As Table reftab2
shows, EQ has higher out-of-sample SR and CEQ values than those of
MV, and, moreover, SR values of EQ is even higher than those of EB and
MinV. These surprising results are due to imprecision of sample mean
and sample covariance. Indeed, if one assume all the assets have the
same mean, variance and correlation, the resulting optimal portfolio is EQ
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portfolio. In such a case, the out-of-sample performance can be improved
by choosing q that of EQ rather than of MinV portfolio.

The out-of-sample CEQ of CE1 for r = 0�5, W = 24 is 0�0722 which
is the second highest value among all considered models. On the other
hand, the poor out-of-sample performance of CE2 shows that choosing
MinV portfolio as q is not enough to improve the performance. As we
increase the window length W from 24 to 48, 60 and 120, we find that
CEQ values of CE1 are lower than that of MV (Tables 2 and 3). This better
performance of MV is due to increased accuracy of the sample covariance
estimates with relatively larger number of observations. For larger value of
W , the performance of CE2 is also much improved due to lower sampling
errors and shrinkage towards the MinV portfolio.

When W = 60, CE2 (r = 0�5) has the highest out-of-sample SR and
CEQ and the difference of CEQ values between CE2 (r = 0�5) and EB is
0�3193 − 0�3024 = 0�0169. Also all SR and CEQ values of CE2 are higher
than those of CE1. When W = 120, CE2 (r = 0�2) performs the best.
The difference of CEQ values between CE2 (r = 0�2) and EB is 0�3197 −
0�3145 = 0�0052, which is lower than 0.0169 (for W = 60). This decrease
may be due to reduced in sampling errors resulting from larger window
length.

Michaud’s (1998) RS portfolio performs relatively well when W is
small, however, as W increases, the performance becomes worse. Since
RS is calculated by taking sample average of resampled portfolios, it
leads to well-diversified allocation, and it shares similar diversification
characteristics of CE1. However, since with larger sample size, the sample
covariance can be estimated with high degree of precision more diversified
portfolios may not lead to improved CEQ values. From Table 3, for
W = 120, the CEQ of RS is 0�2364 which is better than the CEQ of CE1

for all values of r but lower than those of CE2. On the other hand, the
out-of-sample performance of RSs are not as good as RS and very similar
to MVs for all values of W .

Overall, we can say that our CE1 portfolios perform better in terms of
SR and CEQ values than the classical MV and EB procedure with small
number of observations. With relatively large number of observations, we
can estimate the covariance matrix with more precision, and in that case
CE2 portfolios perform very well.

To get an idea of the structure of portfolios obtained using our CE
minimization technique, we plot the weights that would be assigned to
the U.S. market over the each out-of-sample period. Four components
of Figure 6 represent portfolio weights of the U.S. market in case of
no short-selling. In Figure 6(i) we present weights for CE1(r = 0�2, 0�5)
and MV models when W = 24. We note that although the direction of
fluctuations of weights are very similar, both the weights of CE1 are more
stable than those of MV which have high fluctuation over the whole
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FIGURE 6 Weights to the United States: without short-selling. Figures (i)–(ii) and (iii)–(iv)
illustrate portfolio weights assigned to the United States market for W = 24 and W = 120,
respectively, when short-selling is not allowed.

interval [0, 1]. Weights of CE1 vary roughly above 1/8 = 0�125 (the equal
weight with 8 assets), shown by a solid horizontal line in the graph. This
leads to higher SR and CEQ values of CE1. CE1 (r = 0�5) weights are
relatively more volatile than for r = 0�2. The later case represents investor’s
higher degree of uncertainty that leads to more shrinkage toward equally
weighted portfolio. Other graphs in Figure 6 are self-explanatory. Briefly,
CE1 (r = 0�5) weights are more stable than EB weights and are closer to
those of RS in (ii). In Figure 6(iii), where we display the graph for W =
120, we note that with larger window length, MV weights are relatively
less volatile than what we noted in (i) and (ii), compared to those of CE2

for r = 0�2 and 0�1, both of which give almost identical result. Finally,
Figure 6(iv) shows that the weights of EB are almost identical to those of
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CE2 (r = 0�2) as expected, however, EB has smaller SR and CEQ values
than CE2 (r = 0�2) as we noted earlier from Table 3.

In Figure 7, we report GCE portfolio weights of the U.S. market when
short-selling is allowed, i.e., without putting positivity constraints to the
portfolio weights. From Figures 7(i) and (ii) with W =24, most of CEs1 have
roughly the same weight as in the equally weighted portfolio, i.e., 0.125.
However, for the MVs, RSs, and EBs, the degree of fluctuation of portfolio
weights tends to increase with short-selling. For W = 120 in Figures 7(iii)
and (iv), the weights for GCE portfolios are more stable compared to those
of MVs and RSs. This behavior is quite different from those obtained in
Figures 6(iii) and (iv) with no-short-sale.

FIGURE 7 Weights to the United States: with short-selling. Figures (i)–(ii) and (iii)–(iv) illustrate
portfolio weights assigned to the United States market for W = 24 and W = 120, respectively, when
short-selling is allowed.
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6. CONCLUDING REMARKS

The Markowitz MV portfolio optimization theory is based on exact
values of means, variances and covariances of assets. When the sample
mean and covariance matrix are used to calculate portfolios in MV
principle, the portfolio weights have extreme values and out-of-sample
performances are not very good. To take care of these shortcomings, many
empirical Bayes–Stein type estimation approaches have been proposed in
the literature. These are known as shrinkage estimation, and they perform
relatively better. However, there are many ways to choose the prior.
Depending on chosen prior, resulting predictive densities will be different.
And also derivations and estimations of predictive densities sometimes
require complex procedures. We provide an alternative way of portfolio
selection model by introducing CE and GCE as the objective functions.
Since CE and GCE measures can be also interpreted as shrinkage rule,
our methods can be thought of as direct shrinkage towards any reasonable
portfolio. The degree of shrinkage is given by certain quantile values of
resampled maximized (quadratic) expected utility which is designed to
capture the imprecision of the mean and covariance matrix estimates.

Our empirical results demonstrate that the out-of-sample performances
of our suggested portfolio selection procedure, given certain quantile
values of maximized expected quadratic utilities, are superior to those of
the classical MV or empirical Bayes investment rules.

There are two notable aspects of our proposed portfolio selection
procedure. First, the prior (target) portfolio weights can be chosen
freely. One can choose more reasonable prior weights whose efficiency is
investment relevant. For example, a capitalization-weighted prior might be
a good candidate in practice. Second, our method can be immediately
extended to the more general utility function that incorporates higher
moments, such as, asymmetry and leptokurtosis of asset returns. And that
we would like to pursue in our future research.
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